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Palladium hydrides have important applications. However, the complex Pd–H alloy
system presents a formidable challenge to developing accurate computational models.
In particular, the separation of a Pd–H system to dilute (�) and concentrated (�)
phases is a central phenomenon, but the capability of interatomic potentials to display
this phase miscibility gap has been lacking. We have extended an existing palladium
embedded-atom method potential to construct a new Pd–H embedded-atom method
potential by normalizing the elemental embedding energy and electron density
functions. The developed Pd–H potential reasonably well predicts the lattice constants,
cohesive energies, and elastic constants for palladium, hydrogen, and PdHx phases with
a variety of compositions. It ensures the correct hydrogen interstitial sites within the
hydrides and predicts the phase miscibility gap. Preliminary molecular dynamics
simulations using this potential show the correct phase stability, hydrogen diffusion
mechanism, and mechanical response of the Pd–H system.

I. INTRODUCTION

Palladium possesses the capacity to absorb a large
amount of hydrogen to form a hydride.1 This property
enables many important applications such as hydrogen
storage for clean portable energy, new refrigerator de-
signs, catalytic converters, and nuclear radiation adsorp-
tion.1–7 Palladium hydrides are also suited for safe and
efficient processing of hydrogen isotopes such as tri-
tium.8–10 Materials used for these applications must have
good mechanical properties. It is well known, however,
that the dissolution of even a small amount of hydrogen
in metals significantly deteriorates their properties, re-
sulting in embrittlement, crack propagation, and corro-
sion.11–13 There is another significant problem for the
application of tritides caused by the natural radioactive
decay of tritium to form helium atoms. These helium
atoms are insoluble in palladium, and they tend to gather
into bubbles of nanometric size.14,15 The high bubble
pressure exerts significant stresses that are large enough
to cause lattice swelling, crack formation, and quick re-

lease of helium due to the coalescence of defects.16,17

Understanding these phenomena is therefore critical to
predict the time evolution (aging behavior) of material
properties.

Hydrogen can be continuously pumped into the palla-
dium lattice as the surrounding hydrogen gas pressure is
increased. As the hydrogen content increases, the solid
solution first forms a low hydrogen concentration �
phase and then a high hydrogen concentration, but more
defective � phase. In both � and � phases, palladium
atoms fully occupy a face-centered-cubic (fcc) lattice,
whereas hydrogen atoms partially occupy the octahedral
interstitial sites of the palladium lattice. The pressure–
composition curve exhibits a plateau (isotherm) in an
intermediate composition regime where � and � phases
coexist. At room temperature and ambient pressure, the �
and � phases exist at approximate concentrations of
H/Pd � 0.03 and 0.60, respectively.18

The pressure–composition isotherm is a central phe-
nomenon for the application of the hydride19 and may
also affect mechanical properties. For instance, inserting
hydrogen into the octahedral sites of the palladium fcc
lattice expands the lattice in linear proportion to the hy-
drogen content.2 The dislocation density increases during
the hydriding process for accommodating the lattice
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distortion induced by the coexistence of phases, thereby
causing the emergence of fracture.20

The technological importance has stimulated an inter-
est to model PdHx hydride. Extensive first-principles cal-
culations have been carried out.6 Larger-scale molecular
dynamics (MD) or Monte Carlo (MC) simulations have
not been widely used because of the lack of a high-
fidelity Pd–H interatomic potential that is applicable to
the hydrogen composition range 0 � x � 1 and is capable
of predicting the pressure–composition isotherm (i.e., the
� and � phase miscibility gap). Numerous Pd–H poten-
tials have been developed.21–24 However, these poten-
tials are mainly designed for dilute hydrogen composi-
tions, and none of them have been found to correctly
predict the miscibility gap. Some potentials even incor-
rectly predict the occupancy of tetrahedral interstitial
sites by hydrogen atoms.

To our knowledge, the Pd–H embedded-atom method
(EAM) interatomic potential developed by Wolf et al. is
the only one that has been successfully used in MC simu-
lations to qualitatively predict the pressure–composition
isotherm.25 However, in their 1993 publication the au-
thors do not present the functions and parameters that
dictate the Pd–H and H–H interactions; rather, they refer
only to their earlier 1992 publication26 that presents in-
formation only on an EAM potential for pure palladium.
Extensive efforts have been made to obtain this informa-
tion,27 but to our knowledge, specifics on the potential
have been lost. In addition, no testing of this potential
with regard to mechanical properties, e.g., elastic con-
stants and tensile and shear strengths, has been per-
formed.

The purpose of the present work is to develop a Pd–H
interatomic potential that is applicable to the entire hy-
drogen composition range 0 � x � 1 and is capable of
predicting the miscibility gap. Details regarding how
model functions and parameters were obtained are de-
scribed, and physical and mechanical properties of the
resulting potential are explored.

II. EAM

While there are a variety of mathematical formalisms
for interatomic potentials, the EAM potential has an ad-
vantage of being both computationally efficient and
suited to fcc metal systems. EAM potential was initially
developed by Daw and Baskes.21,22 It improves over pair
potentials by incorporating the environmental depend-
ence of the atomic interactions. As a result, it has been
successfully applied to a variety of metal and metal alloy
systems.28,29 EAM has also been successfully applied in
some of the metal hydride problems.30 EAM is hence
chosen as the format for our Pd–H potential.

In EAM, the cohesive energy of a computational sys-
tem composed of N atoms is expressed as

Ec =
1

N
���

i�1

N

Fi(�i� +
1

2
� �

i=1

N

�
j=1

N

�ij�rij�� , (1)

j�i

where Fi(�i) is an embedding energy at site of atom i with
a background electron density of �i, and �ij(rij) is a pair
energy between atoms i and j separated by a distance rij.
Electron density at the site of atom i is calculated as

�i = �
j=1

N

�j
a�rij� , (2)

j�i

where �a
j (rij) is the electron density contribution from

atom j that is rij away from site i. This EAM potential
requires three functions for each element (e.g., i � Pd,
H): the embedding energy Fi(�) as a function of electron
density �, the pair energy �ii(r) as a function of atom
distance r, and the atomic electron density �a

i (r) as a
function of atom distance r. In addition to these three
functions for each of the elements, the cross-pair energy
between dissimilar species i and j, �ij(r), is required for
the alloy system.

III. PALLADIUM POTENTIAL

Numerous EAM potentials have already been devel-
oped for palladium.23,28,31 All of these potentials well
captured the properties of palladium. In particular, the
potential developed by Foiles and Hoyt,32 which incor-
porates the universal equation of state derived by Rose
et al.,33 reproduces exactly the experimental lattice con-
stant, cohesive energy, and bulk modulus of the fcc pal-
ladium crystal. It also well predicts other elastic con-
stants, vacancy formation energy and its relaxation vol-
ume, various defect energies and their relaxation
volumes, defect migration energies, stacking fault ener-
gies, and various surface energies and surface relax-
ations. These properties are important for capturing the
mechanical properties of palladium. The same palladium
EAM potential has also been used to successfully study
the effects of helium bubbles in palladium matrix.32,34 As
a result, we construct our Pd–H potential based on this
palladium EAM potential. This palladium potential is
available in tabular form and is included in molecular
dynamics simulation packages released from Sandia Na-
tional Laboratories.35 For convenience, we also fitted the
tabular palladium functions with high-order polynomial
functions and the results are shown in the Appendix.

The EAM potential has a special property in that an
elemental EAM potential is invariant to a transformation
to the embedding energy function,

G��� = F��� + k�� , (3)
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and a concurrent transformation to the pair potential

��r� = ��r� − 2k��a�r� , (4)

where k is an arbitrary constant. While k does not change
the properties of the element, it does change the proper-
ties of the alloys when the elemental potentials are com-
bined.21,36–38 During potential parameterization, an opti-
mization procedure is used to minimize an objective
function defined as the sum of the square deviation of
predicted properties from the corresponding target (either
experimental or ab initio calculated) properties. At first
sight, it appears that k can be treated as a fitting param-
eter so that the formulism has more freedom to better
minimize the objective function. However, we found that
this scheme caused a drift of k to unphysical values,
resulting in potentials that failed to predict the stable
alloy crystal structures during MD simulations even
though these structures were statically well fitted. This
problem can be overcome by uniquely defining k using a
normalization condition that requires the equilibrium to
be independently achieved for embedding and pair
energy functions for the most stable elemental crystal
phase. By setting the first derivative of the embedding
energy to 0, k can be solved and the normalized pal-
ladium embedding and pair energy functions are ex-
pressed as

FPd��� = FPd,u��� + F�Pd,u��0,Pd��� , (5)

�PdPd�r� = �PdPd,u�r� − 2�F�Pd,u��0,Pd���Pd
a �r� ,

(6)

where FPd,u(�) and �PdPd,u(r) are the original (unnormal-
ized) palladium embedding and pair energy functions,32

F�Pd,u(�0,Pd) is the first derivative of the original palla-
dium embedding energy evaluated at the equilibrium
electron density of the most stable crystal phase of pal-
ladium, �0,Pd, and FPd(�) and �PdPd(r) are the corre-
sponding normalized functions used in the present work.
�0,Pd is equal to a value of 10.261 as determined by using
Eqs. (2) and (A2) and assuming a fcc crystal structure at
a lattice constant of 3.885 Å.

IV. HYDROGEN POTENTIAL AND PAIR
INTERACTION BETWEEN PALLADIUM
AND HYDROGEN

With the palladium potential known, the remaining
work is to develop a hydrogen potential and a cross-pair
potential between palladium and hydrogen. It is more
convenient to use analytical expressions. The pair poten-
tial is approximated by

�HH�r� = DHH���HH�exp�−�HH�r − r0,HH��
− �HH�exp�−�HH�r − r0,HH��� , (7)

where DHH, �HH, �HH, and r0,HH are four positive
constants, and in particular, r0,HH represents the equilib-
rium bond length of a dimer, and DHH (�HH − �HH) is
its binding energy. Equation (7) well approximates the
pair energy because it is more general than a Morse
potential, with the latter being a special case of Eq. (7) at
�HH/�HH � 2.

Within the interaction range usually encountered in
atomistic simulations, electron density increases as
atomic separation decreases. An exponential decay func-
tion well captures this behavior and is used to approxi-
mate the hydrogen electron density function:

�H
a �r� = CH�exp�−	H�r� , (8)

where CH and 	H are two positive constants.
The embedding energy must have a zero value at zero

electron density where atoms are far separated. Previ-
ously used embedding energy functions are usually con-
structed by further requiring that they have a negative
slope at small electron densities and a positive slope at
large electron densities.21,22 The function F(�) �
A1���ln(�) + A2�� satisfies these requirements, where A1

(>0) and A2 are two constants. A problem with this func-
tion is that it has a negative infinity slope at the point �
� 0. Here we use an embedding energy function form
that has a finite negative slope at � � 0 and a positive
slope at large electron densities. It is expressed as

FH,u��� = −cH�� 1

2 + dH
��� + 
H�2+dH −

aH + bH

1 + dH

��� + 
H�1+dH +
aH�bH

dH
��� + 
H�dH� ,

(9)
where aH, bH, cH, dH, and 
H are five positive constants.
It can be seen that when 
H � 0, aH is the electron
density at which the embedding energy is a minimum,
and as long as bH is larger than any electron density that
can be encountered during simulations, Eq. (9) does not
have other minimum or maximum points within the elec-
tron density range simulated. The parameter dH is intro-
duced to make the function more flexible to better fit the
material properties. Because when we use the polynomial
functions described in the Appendix, it is possible that
electron density becomes slightly negative at the cutoff
distance of the potential. We therefore introduce a small
positive number 
H � 0.0540638 to ensure that Eq. (9)
is defined in all atomic spacings. Note that Eq. (9) is not
a normalized function because its slope does not natu-
rally equal 0 at the equilibrium electron density. It is
therefore normalized by

FH��� = FH,u��� − F�H,u��0,H��� . (10)
Because the overall potential is fitted to equilibrium
structure, the pair potential is automatically normalized
once the embedding energy is normalized.
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The EAM model described previously has another
special property in that the elemental potential remains
invariant to a transformation to the electron density con-
tribution function

�H
a �r� = �t��H

a �r� , (11)

as long as a concurrent transformation is made to the
embedding energy

GH��� = FH����t� , (12)

where �t is an arbitrary constant, and �a
H and GH are the

transformed functions. This arises because the electron
density is defined in a relative unit. While �t does not
affect elemental properties, it does affect the alloy prop-
erties. Again we found that �t cannot be treated as a
fitting parameter as the minimization of the objective
function causes it to drift to an unphysical value that fails
to stabilize the fitted crystal structures during MD simu-
lations. It is recognized that the equilibrium electron den-
sities of different elements must be measured in the same
unit. While their values are most likely to be different,
they should not differ by orders of magnitude. We can
therefore normalize the electron density by imposing the
constraint

�min � �0,i � �max , (13)
where �0,i is the equilibrium electron density in the most
stable crystal structure of element i, and �min and �max are
lower and higher bounds for electron density that is com-
mon to all elements. This approach does not specifically
define �t, but with proper electron density bounds,
Eq. (13) ensures that the electron density units of differ-
ent elements are compatible at least in terms of order of
magnitude, and it also provides sufficient freedom for
each element to adjust its own electron density. Given the
value of �0,Pd stated earlier, we used the values of �min �
3 and �max � 14. �t is taken to be equal to 1. We found
that with the two normalizations described previously,
well-behaved alloy potentials were always obtained.

Finally, the cross-pair potential between palladium and
hydrogen is simply approximated by the generalized
Morse potential discussed previously,

�PdH�r� = DPdH���PdH�exp�−�PdH�r − r0,PdH��
− �PdH�exp�−�PdH�r − r0,PdH��� .

(14)

V. PALLADIUM–HYDROGEN
SOLID-SOLUTION MODEL

A. Gibbs free energy of mixing

The phase miscibility is determined by the Gibbs free
energy of mixing per atom as a function of composition
in units of mol fraction. Here we first examine the func-
tion of Gibbs free energy of mixing.

The Gibbs free energy of mixing is expressed as

�Gmix = �Hmix − �Smix�T , (15)

where �Hmix and �Smix are enthalpy and entropy of mix-
ing (per atom), respectively, and T is the temperature.
The reference materials of the mixing can be arbitrary,
but here it is convenient to define the mixing as the
process of forming PdHx from two reference materials
palladium and PdH. Consider the mixing reaction

�NPd�x�PdH + �NPd��1 − x��Pd → �NPd�PdHx ,
(16)

where NPd is total number of Pd atoms involved in the
mixing. As can be seen, the factors NPd·x, NPd·(1 − x),
and NPd in Eq. (16) represent the numbers (chemical
formula units) of the three corresponding materials PdH,
palladium, and PdHx. Assuming that the cohesive ener-
gies (per atom) for PdH, palladium, and PdHx are EPdH,
EPd, and EPdHx

, respectively, the total change of energy
for Eq. (16) is

�Et = NPd��1 + x��EPdHx
− 2�NPd�x�EPdH

− NPd��1 − x��EPd . (17)

The change of energy per atom is then

�E = ��1 + x��EPdHx
− 2�x�EPdH

− �1 − x��EPd���1 + x� . (18)

Replacing x with mol fraction X � x/(1+ x), we have the
heat of mixing

�Hmix = EPdHx
− 2�X�EPdH − �1 − 2�X��EPd ,

(19)

which is consistent with the conventional definition of
heat of mixing.39,40

The entropy of mixing can be approximated by the
change of the configurational entropy. The PdHx lattice is
composed of two sublattices occupied by palladium and
hydrogen atoms, respectively. There is no configura-
tional entropy on the palladium sublattice as it is fully
occupied. The hydrogen sublattice can be viewed as
forming a substitutional H-vacancy “alloy.” The total
configurational entropy of the hydrogen sublattice is then

�St = −NPd�kB��x�ln�x� + �1 − x��ln�1 − x�� ,
(20)

where kB is Boltzmann constant. Notice that the total
number of palladium atoms NPd equals the total number
of sublattice sites (i.e., the total number of hydrogen
atoms and vacancies). The configurational entropy per
atom is then

�S = −kB��x�ln�x� + �1 − x��ln�1 − x����1 + x� ,
(21)

Again replacing x with mol fraction X, we have an en-
tropy of mixing expression
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�Smix = −kB��X�ln�X��1 − X��
+ �1 − 2�X��ln��1 − 2�X���1 − X��� .

(22)

Equations (15), (19), and (22) define a Gibbs free energy
of mixing. It should be noted that in classic molecular
dynamics simulations, the heat capacity is approximated
as independent of materials. In that case, the temperature
does not affect heat of mixing. As a result, Eq. (19) can
be used for other temperatures even if it is derived at 0 K.

B. Cohesive energy as a function of composition

While the cohesive energy of any phase can be calcu-
lated from the interatomic potential and Eq. (1) using a
computational system, the approach is too computation-
ally expensive when applied for a wide range of compo-
sitions and different structures (e.g., fcc palladium with
hydrogen at octahedral as well as tetrahedral interstitial
sites). Here we use a solid-solution model to derive an
approximate analytical equation for cohesive energy as a
function of composition and structure. This solid-
solution model assumes an ideally random distribution of
atoms so that each palladium or hydrogen atom sees the
same environment. While this model greatly improved
the calculation efficiency, it also produced results that
were sufficiently close to those obtained from MD simu-
lations of real systems.

At first sight, it was not clear whether hydrogen
needed to be included in the potential parameterization,
as our goal is to model various compositions of the PdHx

alloy system rather than solid or molecular hydrogen.
However, we found that if hydrogen properties were not
included in the parameterization, the minimization of the
objective function almost always drove the hydrogen co-
hesive energy to an unrealistically high magnitude, re-
sulting in abnormal hydrogen segregation that distorted

and unstabilized the fitted alloy phases during MD simu-
lations. Here, we derive a cohesive energy equation that
includes the hydrogen phase. For this purpose, we use a
more general chemical formula for our compound sys-
tem, PdyHx, so that it includes both hydrogen (y � 0,
x � 1) and PdHx (y � 1) phases.

In the formulation of Gibbs free energy of mixing
described previously, we considered only the equilibrium
PdHx structure where hydrogen atoms occupy the octa-
hedral interstitial sites of the palladium lattice. During
the fitting of the cohesive energy, it is important to en-
sure that this equilibrium phase has the lowest cohesive
energy. This means that the cohesive energies of both
equilibrium and nonequilibrium phases must be included
in the fitting. For this purpose, we assume a general
PdyHx lattice containing several fcc sublattices, where
palladium atoms occupy one fcc sublattice and hydrogen
atoms occupy other fcc sublattices. Two structures con-
sidered are shown in Fig. 1, where in Fig. 1(a), hydrogen
atoms occupy the octahedral interstitial sites, and in
Fig. 1(b) hydrogen atoms occupy the tetrahedral intersti-
tial sites. Accordingly, we denote the structures shown in
Figs. 1(a) and 1(b) by “OC” and “TE,” respectively. It
can be seen that there is only one fcc sublattice for the
octahedral interstitial sites so that the maximum compo-
sition for the OC structure is x � 1 (note that x can also
be viewed as the occupancy probability on the sublat-
tice). On the other hand, there are two fcc sublattices for
the tetrahedral interstitial sites so that the maximum com-
position for the TE structure is x � 2. Alternatively, we
can also represent the OC and TE structures by specifi-
cally including the number of hydrogen sublattices in
the chemical formulae so that they become PdHx and
PdHx/2Hx/2, respectively. The use of PdHx/2Hx/2 im-
plies that hydrogen atoms randomly distribute between
the two sublattices for the TE structure. Note that if

FIG. 1. Two PdHx structures with (a) hydrogen at octahedral sites and (b) hydrogen at tetrahedral sites.
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hydrogen atoms fully occupy one of the tetrahedral sub-
lattice, it forms a zinc-blende PdH crystal, PdH1H0.

In a crystal, an atom interacts with its neighbors that
appear at discrete distances. These neighbors can be
grouped into neighbor shells (e.g., the nearest neighbor
shell, the second neighbor shell, etc.). Assume that
within the cutoff distance of the interaction, there are up
to n neighbor shells. For convenience, we can view the
lattice constant as uniquely determined by the lattice
spacing, which is defined as the nearest neighbor dis-
tance in any of the fcc sublattices. Suppose that in a
structure  ( � OC, TE), a central atom of species �
has zi(, �, �) atoms in the ith neighbor shell of species
�. Obviously, zi is a function of , �, and � and can be
predetermined. The corresponding relative distance to
the ith neighbor shell is �i(, �, �), where the relative
distance means that the distance ri(, �, �) is scaled by
the lattice spacing r1, �i(, �, �) � ri(, �, �)/r1, so that
�i is a predetermined structure parameter and is indepen-
dent of the lattice constant. Here the lattice spacing can
be represented by r1 because by definition, it is indepen-
dent of the structure  and species � and �. With these
concepts, the cohesive energy of the  phase of the solid-
solution PdyHx can be written as

Ec, =
1

�x + y�

�
y�FPd��Pd� + x�FH��H�+

1

2 �
i=1

nPd,Pd

�y�zi�,Pd,Pd��y��PdPd��i�,Pd,Pd��r1��+

1

2 �
i�1

nH,H

�x�zi�,H,H��x��HH��i�,H,H��r1��+

�
i=1

nPd,H

�y�zi�,Pd,H��x��PdH��i�,Pd,H��r1�� ,

(23)

where n�,� is the total number of � neighbor shells sur-
rounding a � atom. The electron density at the atom �
site can be expressed as

�� = �
i=1

n�,Pd

�zi�,�,Pd��y��Pd
a ��i�,�,Pd��r1��

+ �
i=1

n�,H

�zi�,�,H��x��H
a ��i�,�,H��r1�� .

(24)

With electron density defined by Eq. (24), Eq. (23) ex-
presses the cohesive energy as a function of lattice spac-
ing r1 and fitting parameters. Because the expression
does not require calculations for each atom, it can be

calculated efficiently. During potential parameterization,
the cohesive energy at the equilibrium lattice constant (or
lattice spacing) can be conveniently achieved by opti-
mizing the pressure to 0. Pressure can be calculated as

P = −
�Ec

�V
= −

r1

3V

�Ec

�r1
, (25)

where V is volume per atom.

C. Bulk modulus B and elastic constants C�
and C44

Cubic crystals have three independent elastic constants
C11, C12, and C44. Alternatively, the three independent
elastic constants can be represented by bulk modulus
B � (C11 + 2C12)/3 and shear moduli C� � (C11 −
C12)/2 and C44. Our approach uses analytical equations in
Mathematica to fit material properties. Analytical equa-
tions for elastic constants can be easily derived.

The bulk modulus is simply calculated using Eq. (23) as

B = V
�2Ec

�V2 =
r1

2

9V

�2Ec

�r1
2 . (26)

The elastic constant Cij is defined as

Cij =
1

V

�2Ec

�
i�
j
, (27)

where 
i and 
j (i, j � 1, 2, . . . , 6) are strains represented
by the contracted notation.

To calculate the elastic constant Cij, the cohesive en-
ergy needs to be expressed as a function of 
i (i � 1,
2, . . . , 6). Assuming that a lattice vector from atom i to
atom j in an equilibrium crystal is represented by three
components �xij,0, �yij,0, and �zij,0, the three compo-
nents become �xij, �yij, and �zij after an 
1, 
2, . . . , 
6

strain operation. This strain satisfies:

�xij = �xij,0��1 + 
1� + 0.5��yij,0�
6 + 0.5��zij,0�
5

�yij = 0.5��xij,0�
6 + �yij,0��1 + 
2� + 0.5��zij,0�
4

�zij = 0.5��xij,0�
5 + 0.5��yij,0�
4 + �zij,0��1 + 
3� .
(28)

The distance between atoms i and j is

rij = ��xij
2 + �yij

2 + �zij
2�1�2 , (29)

Substituting Eqs. (28) and (29) into Eqs. (1) and (2),
the cohesive energy can be expressed as a function of
strain and fitting parameters at the known lattice spacing.
It should be noted that estimates of elastic constants must
be made using lattice deformations during which atoms
in the same neighboring shell may not always remain at
the same distance to the center atom (except hydrostatic
strain). As a result, Eqs. (1) and (2) instead of Eqs. (23)
and (24) were used in Eq. (27) to calculate elastic con-
stants.
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VI. FITTING PROCEDURES

The goal is to fit the EAM potential to the desired
lattice constant, heat of mixing, bulk modulus, and other
elastic constants (C�, C44) of selected important struc-
tures as well as the relative energy difference between
OC and TE phases. Four OC crystals PdH0.250, PdH0.500,
PdH0.750, and PdH1.000, two TE crystals PdH0.250H0.250

and PdH0.375H0.375, and one fcc hydrogen crystal Pd0H
were considered. The desired properties of the TE struc-
tures were simply chosen to ensure that they are less
stable than the corresponding (i.e., the same composi-
tion) OC structures. The desired properties of hydrogen
were initially taken as the ones obtained from density
function theory (DFT) calculations and then adjusted
during the iterations of the fitting. The desired bulk
modulus and elastic constants C� and C44 for the OC
structures were taken from experiments.41 The desired
lattice constant and heat of mixing of the OC structures
were integrated from both DFT calculations and experi-
ments. First, the energy as a function of lattice spacing
was determined from DFT calculations for the four OC
structures PdH0.250, PdH0.500, PdH0.750, and PdH1.000.
(These calculations were performed for the authors by
Thomas K. Mattsson, a technical staff member of the
High Energy Density Physics (HEDP) Theory depart-
ment at Sandia National Laboratories, Albuquerque,
NM.) As it is well known that cohesive energies deter-
mined from DFT calculations systematically deviate
from experimental measurements, the DFT values were
shifted to best match the experimental cohesive energies.
The experimental cohesive energy of palladium element
is known to be −3.91 eV. An experimental cohesive en-
ergy for the compound PdH0.5 can be derived using the
following reactions:

Pd�g� → Pd�s� , (30)

Pd�s� +
1

4
H2�g� → PdH0.5�s� , (31)

and

1

2
H�g� →

1

4
H2�g� . (32)

Here the subscripts (s) and (g) represent solid and gas
states of the materials, respectively. The energy change
of Eq. (30) is equivalent to the palladium cohesive en-
ergy.32 The energy changes of Eqs. (31) and (32)
have been measured experimentally.42,43 By summing
Eqs. (30), (31), and (32), an experimental cohesive
energy of the PdH0.5 compound was determined as
−3.4877 eV/atom. The two experimental cohesive ener-
gies for Pd and PdH0.5 allow us to determine the respec-
tive energy shifts per palladium and per hydrogen atom.
These in turn allow us to adjust the cohesive energy of a
structure based on its composition. The adjusted cohesive

energies, along with the lattice constants, are shown in
Table I for the five important OC structures.

The adjustments of DFT cohesive energies discussed
previously also connect to the much larger issue of quan-
tum mechanical effects on the motion and energy of hy-
drogen atoms. Recent work by Caputo and Alavi44 shows
that the use of DFT incorrectly predicts tetrahedral site
occupancy and a zinc-blende structure for significant
amounts of H (x � 0.25 to 1) in the Pd–H alloy system.
They hypothesize that DFT omits vibrational zero-point
energy (ZPE), and that inclusion of ZPE is responsible
for the octahedral occupancy observed in experimental
systems. This quantum effect is significant for light ele-
ments such as hydrogen, whereas the additional amount
of ZPE neglected may not be as significant for heavier
elements that act as interstitial impurities. Clearly, fur-
ther investigation of this issue, and other quantum me-
chanical effects, is warranted.

An objective function was defined as a weighted sum
of the square deviation of predicted properties from the
target properties for all the structures being fitted. These
properties include the heat of mixing, relative energy
difference, pressure, bulk modulus, and elastic constants
C� and C44. The target values for the pressure are set to
0 to enforce equilibrium lattice constants. Some proper-
ties, such as those of the TE structures, do not require an
exact match. We then use options “>” or “<” instead of
“�.” Only when the predicted properties violate these
options when compared with their target values will the
corresponding square deviation be summed into the ob-
jective function.

It is important to implement a cutoff distance rc for
both atomic electron density and pair energy functions.
Two steps are used. First, we need to ensure that both
functions naturally (i.e., by themselves) decay to small
values when r gets close to rc, say, r � rc − rs, where rs

is a small distance. This can be achieved by using the
constraints

��rc − rs����r1,e� � 
 , (33)

and

�a�rc − rs���
a�r1,e� � 
 , (34)

during optimization, where 
 is a small number, and r1,e

is the equilibrium lattice spacing of the equilibrium struc-
ture (a nominal atomic separation that is highly likely to
be seen during simulations). The second step is to ensure

TABLE I. Adjusted DFT properties.

Properties/structures PdH0.000 PdH0.250 PdH0.500 PdH0.750 PdH1.000

Lattice constant a (Å) 3.960 4.020 4.077 4.109 4.147
Cohesive energy

Ec (eV/atom) −3.910 −3.647 −3.488 −3.363 −3.261
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that both pairwise functions indeed drop to zero at r �
rc. This can be done by multiplying them with a cutoff
function (1 + cos[�(r − rc + rs)/rs])/2 when r > rc − rs.

With proper bounds for all parameters, optimization is
done using four Mathematica45 built-in methods: differ-
ential evolution, simulated annealing, default, and Nelder
Mead algorithm. The use of four different methods in-
creases the probability of finding a global minimum as
the four methods usually produce different results (unless
the initial parameters that are used for all methods are
already close to the global minimum point). Iterative fit-
ting is carried out by varying fitting conditions (e.g.,
cutoff distances, weights, target values, constraints, use
of “>” or “<” fitting options instead of “�” option or
vice versa, etc.) until satisfactory results are obtained.
The fitted parameters obtained through this process are
listed in Table II. The potentials give F�Pd,u(�0,Pd) �
0.251546, and F�H,u(�0,H) � −0.0296604. Here, a value
of �0,H � 7.98909 was determined by using Eqs. (2) and
(8) and assuming a fcc H crystal structure at a target
value of lattice constant 3.38 Å.

VII. CHARACTERISTICS OF THE POTENTIAL

A. EAM functions

To characterize the fitted potential, we first examine
all the normalized EAM functions in Fig. 2. Here,
FPd(�),�a

Pd (r), and �PdPd(r) were calculated from
Eqs. (5), (A2), and (6), respectively, FH(�),�a

H (r), and
�HH(r) were calculated from Eqs. (10), (8), and (7), re-
spectively, and �PdH(r) was calculated from Eq. (14).
The FPd,u(�), �PdPd,u(r), and FH,u(�) required for the cal-
culations are defined by Eqs. (A1), (A3), and (9). Radial
functions �a

H (r), �HH(r), and �PdH(r) were cutoff using
the cutoff function described previously. Smooth curves
can be seen for all the functions in Fig. 2. Due to the
application of the two normalization approaches,
Fig. 2(a) shows well-behaved embedding energy func-
tions for palladium and hydrogen that reach a minimum
at comparable electron densities. The Pd–Pd and H–H

pair energies shown in Fig. 2(c) reach a minimum at the
atomic spacings that are proportional to their lattice con-
stants. The magnitudes of the pair energies are also com-
parable. The equilibrium separation of the Pd–H pair
energy is shorter, and the corresponding binding energy
is higher. Finally, the decay of the electron density func-
tions shown in Fig. 2(b) appears reasonable and similar
for both palladium and hydrogen over the atomic sepa-
ration distance range commonly encountered in simula-
tions [i.e., �2 Å for palladium and �1.5 Å for hydrogen,
see Fig. 2(c)].

TABLE II. EAM parameters.

Embedding energy (eV)
i ci di ai bi

H 0.000197047 1.18860 9.99780 60.0155
Electron density

i Ci 	i �0,i ���

H 11.0025 1.30927 7.98909 ���

Pair energy (eV)
ij Dij �ij �ij r0,ij

PdH 0.2494540 4.82613 2.13158 1.50964
HH 0.0661496 3.67263 1.47797 2.51980

Cutoff radii (Å)
ij rc,ij rs,ij ��� ���

PdH 4.9500000 0.30000 ��� ���

HH 5.3500000 0.30000 ��� ���

FIG. 2. EAM function curves for (a) embedding energy [as defined in
Eqs. (5), (A1), (9), and (10)], (b) electron density [as defined in
Eqs. (A2) and (8)], and (c) pair energy [as defined in Eqs. (6), (A2),
(A3), (7), and (14)].
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Based on this potential, molecular statics simulations
were used to minimize the energy of various OC struc-
tures as a function of composition using a cubic compu-
tational system containing 6 × 6 × 6 fcc unit cells (cor-
responding to 864 palladium atoms) or more. The result-
ing crystals were used to evaluate the lattice constant,
cohesive energy, and elastic constants C11, C12, and C44,
and the results are shown in Table III. It should be noted
that the palladium elastic constants listed in Table III are
slightly different from the values in Ref. 32. This is be-
cause the tabular palladium potential functions32 do not
have smooth second derivatives, and we have approxi-
mated them with the high-order polynomial functions,
shown in the Appendix. Our polynomial functions have
almost the same values and the same first derivatives to
the original tabular functions, but have slightly different
second derivatives. This causes differences in elastic
constant predictions, but not the cohesive energy or the
lattice constant.

B. Energy as a function of lattice spacing

We further explore the behavior of the potential on
predicting the system energy as the crystal is compressed
or stretched. The energy per atom as a function of lattice
spacing is plotted in Fig. 3 for two representative phases,
PdH0.250 and PdH0.500. Again, smooth curves are seen in
Fig. 3. It can be seen that as the hydrogen composition
increases, the lattice constant increases, and the magni-
tude of cohesive energy becomes lower, in good agree-
ment with the trend shown in Table III.

C. Equilibrium lattice spacing

The equilibrium lattice constant as a function of com-
position is an important property as it causes stress when
adjacent regions have different compositions or even dif-
ferent phases. To characterize the fitted potential, the
predicted equilibrium lattice spacing as a function of
composition is shown as solid circles in Fig. 4 for the OC
PdHx structure. For comparison, the DFT data are shown

as open circles, and the experimental values46 are shown
as the short dashed line. To guide the eye, solid and long
dashed lines are used to connect the data points. It can be
seen that the trend of an increasing equilibrium lattice
spacing with increasing hydrogen composition is pre-
dicted by our potential. The predicted equilibrium lattice
spacing lies between experimental and DFT calculated
values at small compositions, but is larger than both ex-
perimental and DFT calculated values at larger compo-
sitions. This difference arose as a trade-off to better fit
the phase miscibility gap.

D. Cohesive energy

The shape of the cohesive energy as a function of
hydrogen composition relates directly to the phase mis-
cibility gap. In addition, the equilibrium OC structures
must have lower cohesive energies than the TE structures
over the entire composition range. Predicted cohesive
energies as functions of composition x are shown in
Fig. 5 using the filled circles for the TE structure and
the open circles for the OC structure. Here cohesive en-
ergies of the OC structure were the minimum energy
obtained from molecular statics simulations, listed in
Table III. The same approach cannot be used for unstable
TE structures as they will transform to OC structures in
simulations. As a result, the cohesive energies of the TE

TABLE III. Predicted values of lattice constant a, cohesive energy Ec,
and elastic constants C11, C12, and C44.

Structures a (Å) Ec (eV/atom) C11 (GPa) C12 (GPa) C44 (GPa)

PdH0.000 3.885 −3.910 245.8 199.8 54.7
PdH0.087 3.923 −3.770 226.0 186.5 44.7
PdH0.185 3.965 −3.638 207.7 173.4 38.9
PdH0.292 4.010 −3.520 194.1 162.7 32.7
PdH0.378 4.045 −3.439 186.0 156.2 28.9
PdH0.476 4.083 −3.361 181.4 152.0 26.7
PdH0.558 4.113 −3.303 183.9 152.5 27.5
PdH0.666 4.148 −3.238 208.3 163.1 33.5
PdH0.784 4.180 −3.176 241.5 176.7 36.4
PdH0.885 4.202 −3.129 245.9 181.9 33.2
PdH1.000 4.225 −3.081 241.7 190.3 25.5

FIG. 3. Energy as a function of lattice spacing for OC lattices.

FIG. 4. Lattice spacing as a function of composition for OC lattices.
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structure were calculated using Eq. (23) at the equilib-
rium lattice spacing r1,e. It can be seen from Fig. 5 that
the potential correctly predicts a more stable OC struc-
ture than a TE structure over the entire composition range
0 � x � 1.

The quantity shown in Fig. 5 is energy per atom. As
x → 0, the solution becomes infinitely dilute and the
number of palladium atoms becomes infinitely large
compared with that of the hydrogen atoms. As a result,
values of energy per atom for both OC and TE structures
converge to the palladium cohesive energy. Figure 5,
therefore, does not sensitively show the relative stability
of OC and TE structures at small compositions. Relaxed
total energies were hence calculated using a large fcc
palladium crystal with a single hydrogen atom placed at
OC and TE sites. We found that the total energy with the
hydrogen atom at the TE site is about 0.127 eV higher
than that with the hydrogen atom at the OC site.

E. Gibbs free energy of mixing

To verify the existence of the phase miscibility gap
and to estimate the compositions of the � and � phases
when they are in equilibrium, the cohesive energy data
obtained from molecular statics simulations were used in
Eq. (15) to calculate the Gibbs free energy of mixing as
a function of mol fraction for the OC structure. The re-
sults are plotted in Fig. 6 at two temperatures, 300 and
500 K. Figure 6 clearly shows that the system splits into
two coexisting phases. At the low temperature of 300 K,
the equilibrium mole fractions for the � and � phases are
X � 0 and 0.45, respectively, corresponding to x of 0 and
(approximately) 0.82. While the potential correctly pre-
dicts the phase separation, the equilibrium composition
for the � and � phases are somewhat underestimated and
overestimated, respectively. As mentioned previously, it
has been experimentally determined that phase bound-
aries at room temperature are x � 0.03 and 0.6.18 It
should be noted that such a discrepancy was also char-
acteristic of the “lost” potential by Wolf et al.25 They
noted � and � compositions of x � 0.1385 and 0.8362.

Our potential is an improvement in this regard. At the
high temperature of 500 K, the mol fractions for the �
and � phases become closer to X � 0.1 and 0.4, respec-
tively, corresponding to x of about 0.11 and 0.67.

F. Elastic constants

The minimized energy OC configurations were used to
calculate the elastic constants B, C�, and C44, converted
from the values for C11, C12, and C44 listed in Table III.
The results are shown in Fig. 7 as functions of compo-
sition.

It can be seen that the general trend of how elastic
constants vary with composition matches well with the
experiments by Schwarz et al.41 Also, the quantitative
agreement is very good, especially considering that these
experimental values were only weakly used in the fitting
process. Several specific features can be noticed: The
value of the bulk modulus at high concentrations of hy-
drogen, i.e., beyond the � phase boundary composition,
is only slightly lower than the value at the dilute limit,
and is essentially flat within the high concentration range
0.82 � x � 1. C�, shown in Fig. 7(b), exhibits a peak
value at the equilibrium composition of the � phase. Our
computationally determined curve even has a shape simi-
lar to the one theorized by Schwarz et al. and shown in
Fig. 9 of their paper.41 The value of C44, while differing
somewhat from the bilinear form supposed by Schwarz
et al., does show a decreasing trend over the high hydro-
gen concentration range of 0.82 � x � 1. Also, it does
appear that a line connecting the � concentration point
with the x � 0 (pure palladium) point would have a
lower slope than a line interpolated through the high
concentration points.

G. Mechanical strength

We also performed molecular statics calculations to
explore the mechanical behavior of the PdHx OC struc-
ture as a function of composition. We first examined the
tensile strength using systems containing 6 × 6 × 6 cubic

FIG. 5. Cohesive energy as a function of composition for OC and TE
lattices.

FIG. 6. Gibbs free energy of mixing as a function of mol fraction for
the OC structure.
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cells in the three coordinate directions (a total of 864 to
1728 atoms depending on the hydrogen concentration).
Periodic boundary conditions were used in all directions,
and the system was sequentially stretched in the y-
direction by a strain increment of 0.00005. For each
stretch increment, the energy of the system was mini-
mized and a constant zero pressure condition was applied
in the x- and z-directions to simulate uniaxial stress load-
ing. The virial stress of the relaxed system as a function
of stretch was calculated. Two examples, PdH0.1 and
PdH0.8, respectively, are shown in Fig. 8.

In Fig. 8, the applied tensile strain is defined as 
 �
(1.00005)n − 1 where n is the number of stretch incre-
ments applied. If strength is defined as the maximum
stress in the stress versus applied tensile strain curve, the
results in Fig. 8 indicate that the strength of the material
decreases with increasing hydrogen composition. This is
indeed shown to be the case in Fig. 9, where strength is
plotted as a function of composition. Our results indicate
that tensile strength decreases monotonically as hydro-
gen composition is increased.

We next examined shear strength, using systems con-
taining 10 × 10 × 10 cubic cells for a total of 4000 to
8000 atoms. Periodic boundary conditions are applied in
the x- and z-directions, while the top and bottom layers
(referred to the y-direction) are displaced in the x-
direction to simulate a simple shear mode of deforma-
tion. As the shear is applied, the system is allowed to
relax in the y-direction, but the x- and z- dimensions are
kept constant. A strain increment of 0.0001 is used. Due
to the nonperiodicity of the boundaries in the y-direction,
the stress is not calculated using all the atoms within the
system. Rather, a subregion in the middle of the system
with a dimension of 10 × 5 × 10 cubic cells is used to
estimate the stresses, thereby minimizing the effect of
boundary conditions on this material property. Figure 10

FIG. 7. Elastic constants as a function of composition for OC struc-
ture. (a) B. (b) C�. (c) C44. Curved, solid lines are shown as guides for
connecting the simulated data.

FIG. 8. Tensile stress as a function of stretch.

FIG. 9. Tensile strength as a function of composition for OC struc-
tures.
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shows how this estimate of shear stress varies with the
applied shear strain, and Fig. 11 shows how shear
strength, the maximum value for these shear stress
curves, varies as a function of composition. It is observed
that for our potential, shear strength also decreases with
increasing hydrogen concentration.

VIII. MOLECULAR DYNAMICS SIMULATIONS

The simulations discussed previously were all carried
out under static conditions and relaxed atomic spacing.
During MD simulations, atoms are disturbed from their
ideal lattice sites. This allows the system to sample many
of the configurations that have not been sampled under
the static conditions. As a result, statically stable struc-
tures may become unstable during MD simulations. We
have therefore carried out a series of MD simulations to
verify the fidelity of our potential.

In the first type of simulations, OC and TE structures
with various compositions were annealed for a nanosec-
ond at various temperatures ranging from 200 to 500 K
using the MD simulation approach. All OC structures
were found stable, and all TE structures were found to
transform to OC structures. As an example, an initial
PdH0.392H0.392 TE structure containing 6 × 6 × 6 cubic
cells in the three coordinate directions is shown in

Fig. 12(a). Molecular dynamics was first used to anneal
the structure at 300 K for a nanosecond. Molecular statics
was subsequently used to minimize the energy of the
system. The atomic configuration after MD + MS simu-
lations is shown in Fig. 12(b). It can be seen that many of
the hydrogen atoms switched from the tetrahedral sites to
the octahedral sites during the MD + MS energy mini-
mization process. The potential hence ensures both phase
stability and the correct hydrogen interstitial sites.

The second type of MD tests used the same crystal
geometry to examine the diffusion of a single hydrogen
atom. We found that when the velocities for all atoms in
the system were initialized according to a Boltzmann
energy distribution consistent with the initial system tem-
perature, classical MD simulation always predicted a hy-
drogen atom jump rate that was almost the same as its
vibrational rate. This occurred in both constant energy
and constant temperature simulations that were carried
out using time steps ranging from 0.00005 to 0.001 ps
(small time steps were needed because the hydrogen
atom moved very fast as its mass is about 100 times
smaller than that of a palladium atom). To correct for
this, we discovered that if the initial system temperature
is used to initialize velocities for only the palladium at-
oms while the hydrogen velocities were set to 0, or the
mass of hydrogen atom was artificially increased to a
value comparable to that of a palladium atom, then real-
istic diffusion jump rates were obtained.

Because the hydrogen mass was small, little energy
transfer occurred during each vibration of the hydrogen
atom in the palladium lattice. If the hydrogen acquired
enough energy (either due to velocity initialization or the
dragging force used for constant temperature simulation)
that could overcome the energy barrier for jumps, it
maintained its jump capability over a long time, resulting
in fast jump rates. It is not clear if the temperature ini-
tialization or the temperature control routines used in
classical MD simulations are accurate representations of
the equilibrium atomistic systems involving particles
with vastly different masses. We believe that a realistic
simulation requires a constant energy MD simulation
over a long time using a very small time step with a zero
initial velocity for the hydrogen atom. Since our purpose
was to test the potential, a more efficient computational
approach was used. We artificially increased the mass of
the hydrogen atom to that of a palladium atom. This
increase will change the vibrational frequency (for har-
monic systems, vibration frequency is inversely propor-
tional to the square root of the mass), but not the activa-
tion energy barrier for the jumps. The time evolution of
the position of the hydrogen atom obtained from a MD
simulation at a temperature of 300 K is shown in Fig. 13.
A hydrogen atom was initially put at an octahedral site
Fig. 13(a). After 440 ps, the hydrogen was seen to make
a first jump to a tetrahedral site, Fig. 13(b). After an

FIG. 10. Shear stress as a function of applied strain.

FIG. 11. Shear strength as a function of composition for OC struc-
tures.
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additional 10 ps, the hydrogen atom was again seen to
jump to an octahedral site, Fig. 13(c). As a result, jumps
occur on the order of 400 ps, via an octahedral → tetra-
hedral → octahedral path. The fast diffusion is in good
agreement with experiments.47

As already noted, our mass change for hydrogen atoms
affects the vibration frequencies observed but not the
energy barriers present due to the potential energy land-
scape. However, mass and energy are not the only char-
acteristics that affect jumping mechanisms. Contribu-
tions from entropy, specifically the migration entropy,
also play a role. It is therefore possible that our approach
modifies the jumping mechanisms observed. We empha-
size that the results presented here only serve as a means
to characterize our potential. Those intent on the accurate
simulation of diffusion mechanisms are encouraged to
explore these issues.

IX. CONCLUSIONS

Analytical EAM potentials have been developed and
integrated with a published EAM potential of palladium

to form a Pd–H alloy EAM potential. This potential is
suitable for any composition of the Pd–H system. It well
predicts the lattice constant, cohesive energy, bulk modu-
lus, and other elastic constants for a variety of structures.
It can also predict the phase miscibility gap for the Pd–H
system. Direct MD simulations indicate that this poten-
tial ensures the phase stability during dynamic simula-
tions and can correctly capture the diffusion mechanism
of hydrogen in the palladium lattice. The following ap-
proaches were found to be critical to the development:

(1) hydrogen and other nonequilibrium phases must
be included in the potential parameterization;

(2) both the embedding energy and electron density
functions must be normalized for palladium and hydro-
gen to create a well-behaved alloy potential;

(3) a solid-solution model significantly improves the
efficiency of the potential parameterization while still
possesses sufficient accuracy needed for the potential;

(4) more general embedding and pair energy func-
tions can be used to improve the fitting; and

(5) the parameterization must be carried out itera-
tively with respect to cutoff distance, adjustment of target

FIG. 12. Change of atomic configurations of a PdH0.784 phase due to MD annealing at 300 K for 1 ns followed by MS energy minimization. (a)
The TE structure before MD + MS relaxation and (b) after MD + MS energy relaxation.

FIG. 13. Snapshots of single hydrogen atom diffusion in a palladium matrix. Time: (a) 0 ps, (b) 440 ps, and (c) 450 ps. The size of the hydrogen
atom is magnified for clarity.
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values, the weights used to define the objective function,
the bounds for parameters or other constraints, and fitting
options such as “>” or “<” instead of “�.”
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APPENDIX: HIGH-ORDER POLYNOMIAL
PALLADIUM EAM FUNCTIONS

For easy use within our potential fitting program, the
palladium EAM functions have been converted to high-
order polynomial functions:

FPd,u��� = 295,878.9003038662���̂ − 0.20581955357385892�
���̂ − 0.081228755904399���̂���̂ + 0.05298811034615951�
���̂���̂ − 2.4242616904962846� + 1.4791899886249564�
���̂���̂ − 2.1376274623740064� + 1.2169215689822592�
���̂���̂ − 1.6486007989726832� + 0.8159825255339774�
���̂���̂ − 1.0749204110338482� + 0.42007491336688396�
���̂���̂ − 0.5128056047933808� + 0.12468685331167456�

(A1)
where �̂ ≡ �/50.

�Pd
a �r� = −0.02972698211669922

+ r̂��
0.6676807403564453 +

r̂��−255.8965835571289 + r̂�
(14,673.409149169922
− �2.597301181336601 × 107��a�r�)

�� ,

(A2)

where

�a�r� = r̂
��r̂��r̂ − 2.7267629107325706� + 1.8716766113599643�
��r̂��r̂ − 2.50290548851635� + 1.668549182690922�
��r̂��r̂ − 2.0924467509943674� + 1.3150372774478005�
��r̂��r̂ − 1.564328475106985� + 0.8987511149780485�
��r̂��r̂ − 1.009780903403673� + 0.5124363774128722�
��r̂��r̂ − 0.5304054524800665� + 0.2169886022464641�
��r̂��r̂ − 0.1356566408715063� + 0.035852347523891395�

and r̂ ≡ r/5.

�PdPd,u�r� = −79,415.24035137112
��r̂ − 1.0699996145674568���r̂ − 1.06015072612581�
��r̂ − 0.42433991011376526���r̂ + 0.06169160085238687�
��r̂��r̂ − 2.0586473420376348� + 1.0683922574015199�
��r̂��r̂ − 1.6696359816422877� + 0.7337878627470482�
��r̂��r̂ − 1.1690370066230809� + 0.3909805777737639�
��r̂��r̂ − 0.2635598721249787� + 0.033551116514910245� .

(A3)

Note that embedding energy is expressed in terms of
�̂ ≡ �/50 and electron density and pair energy are ex-
pressed in terms of r̂ ≡ r/5. This is necessary to improve
the precision required by the high order polynomial func-
tions. Eqs. (A2) and (A3) are valid only within the cutoff
distance rc,PdPd � 5.35 Å.
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